A difference ring theory for symbolic summation☆
نویسنده
چکیده
A summation framework is developed that enhances Karr's difference field approach. It covers not only indefinite nested sums and products in terms of transcendental extensions, but it can treat, e.g., nested products defined over roots of unity. The theory of the so-called [Formula: see text]-extensions is supplemented by algorithms that support the construction of such difference rings automatically and that assist in the task to tackle symbolic summation problems. Algorithms are presented that solve parameterized telescoping equations, and more generally parameterized first-order difference equations, in the given difference ring. As a consequence, one obtains algorithms for the summation paradigms of telescoping and Zeilberger's creative telescoping. With this difference ring theory one gets a rigorous summation machinery that has been applied to numerous challenging problems coming, e.g., from combinatorics and particle physics.
منابع مشابه
Summation Theory II: Characterizations of $\boldsymbol{R\Pi\Sigma^*}$-extensions and algorithmic aspects
Recently, RΠΣ∗-extensions have been introduced which extend Karr’s ΠΣ∗-fields substantially: one can represent expressions not only in terms of transcendental sums and products, but one can work also with products over primitive roots of unity. Since one can solve the parameterized telescoping problem in such rings, covering as special cases the summation paradigms of telescoping and creative t...
متن کاملA Refined Difference Field Theory for Symbolic Summation
In this article we present a refined summation theory based on Karr’s difference field approach. The resulting algorithms find sum representations with optimal nested depth. For instance, the algorithms have been applied successively to evaluate Feynman integrals from Perturbative Quantum Field Theory.
متن کاملAlgebraic Extensions for Symbolic Summation
The main result of this thesis is an effective method to extend Karr’s symbolic summation framework to algebraic extensions. These arise, for example, when working with expressions involving (−1)n. An implementation of this method, including a modernised version of Karr’s algorithm is also presented. Karr’s algorithm is the summation analogue of the Risch algorithm for indefinite integration. I...
متن کاملIRREDUCIBILITY OF q - DIFFERENCE OPERATORS AND THE KNOT 7
Our goal is to compute the minimal-order recurrence of the colored Jones polynomial of the 74 knot, as well as for the first four double twist knots. As a corollary, we verify the AJ Conjecture for the simplest knot 74 with reducible non-abelian SL(2,C) character variety. To achieve our goal, we use symbolic summation techniques of Zeilberger’s holonomic systems approach and an irreducibility c...
متن کاملIRREDUCIBILITY OF q-DIFFERENCE OPERATORS
Our goal is to compute the minimal-order recurrence of the colored Jones polynomial of the 74 knot, as well as for the first four double twist knots. As a corollary, we verify the AJ Conjecture for the simplest knot 74 with reducible non-abelian SL(2,C) character variety. To achieve our goal, we use symbolic summation techniques of Zeilberger’s holonomic systems approach and an irreducibility c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 72 شماره
صفحات -
تاریخ انتشار 2016